GCSE Mathematics Extension Material

SSM 1

Trigonometry 1

What you should know

The trigonometric ratios: $\sin \theta = \frac{1}{2}$	opposite $\cos \theta$	$-$ adjacent tan θ -	opposite
	hypotenuse, cost -	hypotenuse, tan b -	adjacent
Pythagoras' theorem: $opposite^2 + adjacent^2 = hypotenuse^2$			

New idea

If you divide $\sin \theta$ by $\cos \theta$ you get $\frac{\sin \theta}{\cos \theta} = \frac{\text{opp}}{\text{hyp}} \div \frac{\text{adj}}{\text{hyp}}$ $= \dots$ $= \tan \theta$ so $\tan \theta = \frac{\sin \theta}{\cos \theta}$. $\sin^2 \theta$ means $(\sin \theta)^2$ so you can write

$$\sin^2 \theta = \left(\frac{\text{opp}}{\text{hyp}}\right)^2$$

Using this idea you can add together $\sin^2 \theta$ and $\cos^2 \theta$ to get

$$\sin^2 \theta + \cos^2 \theta = \left(\frac{\text{opp}}{\text{hyp}}\right)^2 + \left(\frac{\text{adj}}{\text{hyp}}\right)^2$$
$$= \dots$$
$$= 1$$

so $\sin^2 \theta + \cos^2 \theta = 1$.

Task: Trigonometric identities

- In both of the ideas above, what should the missing bits of algebra, represented by ..., be? (There is more than one line of algebra missing!)
- Find the sine and cosine of some angles and check that, in every case, $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta = 1$.

Remember: $\sin^2 \theta$ means $(\sin \theta)^2$ and $\cos^2 \theta$ means $(\cos \theta)^2$.

Take it further

You can use these identities to find values for cos θ and tan θ even if you only know sin θ. You don't even need to find out what the angle θ is.

Try finding $\cos \theta$ and $\tan \theta$ when $\sin \theta = \frac{3}{5}$.

- Can you find some other right-angled triangles where $\sin \theta$, $\cos \theta$ and $\tan \theta$ are all rational numbers (fractions that can be written as one integer over another)?
- Do these identities work when $\theta < 0^\circ$ or $\theta > 90^\circ$?
- Find out what **secant**, **cosecant** and **cotangent** are.
- Try dividing $\sin^2 \theta + \cos^2 \theta = 1$ by $\cos^2 \theta$. What identity do you get?

Where this goes next

At A level trigonometry is studied in Core Mathematics.

© MEI 2009

Mathematics in Education and Industry

SSM 1

Trigonometry 1

Teachers' notes Task

•
$$\frac{\sin \theta}{\cos \theta} = \frac{\operatorname{opp}}{\operatorname{hyp}} \div \frac{\operatorname{adj}}{\operatorname{hyp}}$$
$$= \frac{\operatorname{opp}}{\operatorname{hyp}} \times \frac{\operatorname{hyp}}{\operatorname{adj}}$$
$$= \frac{\operatorname{opp}}{\operatorname{adj}}$$
$$= \tan \theta$$
$$\sin^2 \theta + \cos^2 \theta = \left(\frac{\operatorname{opp}}{\operatorname{hyp}}\right)^2 + \left(\frac{\operatorname{adj}}{\operatorname{hyp}}\right)^2$$
$$= \frac{\operatorname{opp}^2}{\operatorname{hyp}^2} + \frac{\operatorname{adj}^2}{\operatorname{hyp}^2}$$
$$= \frac{\operatorname{opp}^2 + \operatorname{adj}^2}{\operatorname{hyp}^2}$$
$$= \frac{\operatorname{hyp}^2}{\operatorname{hyp}^2}$$
$$(\operatorname{by Pythagoras})$$
$$= 1$$

Take it further

•
$$\sin^2 \theta + \cos^2 \theta = 1$$

 $\left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1$
 $\cos^2 \theta = 1 - \frac{9}{25}$
 $= \frac{16}{25}$
so $\cos \theta = \sqrt{\frac{16}{25}} = \frac{4}{5}$
 $\tan \theta = \frac{\sin \theta}{\cos \theta}$
 $= \frac{3}{5} \div \frac{4}{5}$
 $= \frac{3}{4}$

 When sin θ = ³/₅, the triangle is based on the Pythagorean triple 3, 4, 5. For any right-angled triangle based on a Pythagorean triple sin θ, cos θ and tan θ will all be rational numbers. Other Pythagorean triples include 5, 12, 13 and 20, 21, 29. • Here is one possible triangle for sin $\theta = \frac{3}{5}$.

The missing side length is 4 (by Pythagoras) and you can see that $\cos \theta = \frac{4}{5}$ and $\tan \theta = \frac{3}{4}$.

When square rooting $\frac{16}{25}$ the value $\frac{-4}{5}$ could have been obtained. This would correspond to an angle of approximately 143°. The identities $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta = 1$ still work for angles less than 0° and greater than 90°. secant or sec $\theta = \frac{1}{\cos \theta}$ or $\frac{\text{hyp}}{\text{adj}}$ cosecant or cosec $\theta = \frac{1}{\sin \theta}$ or $\frac{\text{hyp}}{\text{opp}}$ cotangent or $\cot \theta = \frac{1}{\tan \theta}$ or $\frac{\text{adj}}{\text{opp}}$

• $\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}$ $\tan^2 \theta + 1 = \sec^2 \theta$

Students can also divide through by $\sin^2 \theta$ to get the identity

$$\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

© MEI 2009

= MEI

Mathematics in Education and Industry

Innovators in Mathematics Education