What you should know

The trigonometric ratios: $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}, \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}, \tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
Pythagoras' theorem: opposite ${ }^{2}+$ adjacent $^{2}=$ hypotenuse 2

New idea

If you divide $\sin \theta$ by $\cos \theta$ you get

$$
\begin{aligned}
\frac{\sin \theta}{\cos \theta} & =\frac{\text { opp }}{\text { hyp }} \div \frac{\text { adj }}{\text { hyp }} \\
& =\ldots \\
& =\tan \theta
\end{aligned}
$$

so $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

$$
\sin ^{2} \theta \text { means }(\sin \theta)^{2} \text { so you can write }
$$

$$
\sin ^{2} \theta=\left(\frac{\mathrm{opp}}{\mathrm{hyp}}\right)^{2}
$$

Using this idea you can add together $\sin ^{2} \theta$ and $\cos ^{2} \theta$ to get

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =\left(\frac{\text { opp }}{\text { hyp }}\right)^{2}+\left(\frac{\text { adj }}{\text { hyp }}\right)^{2} \\
& =\ldots \\
& =1
\end{aligned}
$$

$$
\text { so } \sin ^{2} \theta+\cos ^{2} \theta=1
$$

Task: Trigonometric identities

- In both of the ideas above, what should the missing bits of algebra, represented by be? (There is more than one line of algebra missing!)
- Find the sine and cosine of some angles and check that, in every case, $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$.
Remember: $\sin ^{2} \theta$ means $(\sin \theta)^{2}$ and $\cos ^{2} \theta$ means $(\cos \theta)^{2}$.

Take it further

- You can use these identities to find values for $\cos \theta$ and $\tan \theta$ even if you only know $\sin \theta$. You don't even need to find out what the angle θ is.
Try finding $\cos \theta$ and $\tan \theta$ when $\sin \theta=\frac{3}{5}$.
- Can you find some other right-angled triangles where $\sin \theta, \cos \theta$ and $\tan \theta$ are all rational numbers (fractions that can be written as one integer over another)?
- Do these identities work when $\theta<0^{\circ}$ or $\theta>90^{\circ}$?
- Find out what secant, cosecant and cotangent are.
- Try dividing $\sin ^{2} \theta+\cos ^{2} \theta=1$ by $\cos ^{2} \theta$. What identity do you get?

Where this goes next

At A level trigonometry is studied in Core Mathematics.

Teachers' notes

Task

- $\frac{\sin \theta}{\cos \theta}=\frac{\text { opp }}{\text { hyp }} \div \frac{\text { adj }}{\text { hyp }}$

$$
=\frac{\text { opp }}{\text { hyp }} \times \frac{\text { hyp }}{\text { adj }}
$$

$$
=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

$$
=\tan \theta
$$

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =\left(\frac{\text { opp }}{\text { hyp }}\right)^{2}+\left(\frac{\text { adj }}{\text { hyp }}\right)^{2} \\
& =\frac{\text { opp }^{2}}{\text { hyp }^{2}}+\frac{\text { adj }^{2}}{\text { hyp }^{2}} \\
& =\frac{\text { opp }^{2}+\text { adj }^{2}}{\text { hyp }^{2}} \\
& =\frac{\text { hyp }^{2}}{\text { hyp }^{2}} \\
& \text { (by Pythagoras) } \\
& =1
\end{aligned}
$$

Take it further

- $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{aligned}
&\left(\frac{3}{5}\right)^{2}+\cos ^{2} \theta=1 \\
& \cos ^{2} \theta=1-\frac{9}{25} \\
&=\frac{16}{25} \\
& \text { so } \cos \theta=\sqrt{\frac{16}{25}}=\frac{4}{5} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
&=\frac{3}{5} \div \frac{4}{5} \\
&=\frac{3}{4}
\end{aligned}
$$

- When $\sin \theta=\frac{3}{5}$, the triangle is based on the Pythagorean triple 3, 4, 5 .
For any right-angled triangle based on a Pythagorean triple $\sin \theta, \cos \theta$ and $\tan \theta$ will all be rational numbers. Other Pythagorean triples include $5,12,13$ and 20, 21, 29.

